
THEORY ON MIXTURE-OF-EXPERTS IN CONTINUAL LEARNING

Presenter: Hongbo Li, Postdoc Reseach Fellow

Engineering Systems and Design Pillar
Singapore University of Technology and Design

December 23, 2024

PUBLICATIONS

1. Hongbo Li, Sen Lin, Lingjie Duan, Yingbin Liang, and Ness B. Shroff, "Theory on
Mixture-of-Experts in Continual Learning", submitted to ICLR 2025, [Online Available]
https://arxiv.org/abs/2406.16437.

2. Hongbo Li, and Lingjie Duan, "Theory on Mixture-of-Experts in Mobile Edge Computing", accepted
by INFOCOM 2025.

2 / 59

Part I

MOE IN CONTINUAL LEARNING

3 / 59

MOTIVATIONS

▶ Continual Learning (CL) has emerged as an important paradigm in machine learning, in which
an expert aims to learn a sequence of tasks one by one over time.

▶ Given the dynamic nature of CL, one major challenge herein is known as catastrophic
forgetting, where a single expert can perform poorly on (i.e., easily forget) the previous tasks
when learning new tasks if data distributions change largely across tasks.

4 / 59

LITERATURE REVIEW: CL

Various empirical approaches have been proposed to tackle catastrophic forgetting in CL:
▶ Regularization-based approaches (e.g., Kirkpatrick et al. 2017; Gou et al. 2021).
▶ Parameter-isolation-based approaches (e.g., Chaudhry et al. 2018; Konishi et al. 2023).
▶ Memory-based approaches (e.g., Jin et al. 2021; S. Lin, Yang, et al. 2021; R. Gao and Liu 2023).

On the other hand, theoretical studies on CL are very limited.

5 / 59

LITERATURE REVIEW: MOE MODEL

▶ Mixture-of-Experts (MoE) has found widespread applications in emerging fields such as large
language models (LLMs) (e.g., Du et al. 2022; Li et al. 2024; B. Lin et al. 2024).

▶ Chen et al. (2022) theoretically analyze the mechanism of MoE in deep learning under the setup
of a mixture of classification problem. However, this study focuses on a single-task setting, and
hence does not analyze the dynamics of CL.

6 / 59

LITERATURE REVIEW: MOE IN CL

▶ Recently, the MoE model has been applied to reducing catastrophic forgetting in CL (Hihn and
Braun 2021; L. Wang et al. 2022; Doan, Mirzadeh, and Farajtabar 2023; Rypeść et al. 2023; J. Yu
et al. 2024).

▶ However, these works solely focus on empirical methods, lacking theoretical analysis of how
the MoE performs in CL.

7 / 59

CL IN LINEAR MODEL

We consider the CL setting with T training rounds.
▶ In each round t ∈ [T], one out of N tasks randomly arrives to be learned by the MoE model with

M experts.
▶ For each task, we consider fitting a linear model f (X) = X⊤w with ground truth w ∈ Rd.
▶ Then for the t-th task arrival, let Dt = (Xt,yt) denote its dataset, where Xt ∈ Rd×st is the feature

matrix, and yt ∈ Rst is the output vector.
▶ In this study, we focus on the overparameterized regime, where st < d.

8 / 59

CL IN LINEAR MODEL (CONT.)

▶ Let W = {w1, · · · ,wN} represent the collection of ground truth vectors of all N tasks.
▶ For any two tasks n,n′ ∈ [N], we assume ∥wn − wn′∥∞ = O(σ0), where σ0 ∈ (0, 1) denotes the

variance.
▶ We assume that task n possesses a unique feature signal vn ∈ Rd with ∥vn∥∞ = O(1).
▶ In each round t ∈ [T], let nt ∈ [N] denote the index of the current task arrival with ground truth

wnt ∈ W .

9 / 59

CL IN LINEAR MODEL (CONT.)

At the beginning of each training round t ∈ [T], the dataset Dt = (Xt,yt) of the new task arrival nt is
generated by the following steps:

1. Uniformly draw a ground truth wn from ground-truth pool W and let wnt = wn.
2. Independently generate a random variable βt ∈ (0,C], where C is a constant satisfying

C = O(1).
3. Generate Xt as a collection of st samples, where one sample is given by βtvnt and the rest of the

st − 1 samples are drawn from normal distribution N (0, σ2
t Id), where σt ≥ 0 is the noise level.

4. Generate the output to be yt = X⊤
t wnt .

10 / 59

STRUCTURE OF THE MOE MODEL

Input

Output

Router

Gating Network

(𝐗!, 𝒚!)

Expert 1 Expert 2 Expert M. . .

Softmax

Update
𝚯!"#

𝐡(𝐗!, 𝚯")

(𝐗!, 𝒚!)

𝒘!
($!)

𝛑(𝐗!, 𝚯")

▶ Upon the arrival of task nt and input of its data Dt = (Xt,yt), the gating network computes its
linear output hm(Xt,θ

(m)
t) for each expert m ∈ [M].

▶ Define h(Xt,Θt) := [h1(Xt,θ
(1)
t) · · · hM(Xt,θ

(M)
t)] and Θt := [θ

(1)
t · · · θ(M)

t] as the outputs and
the parameters of the gating network for all experts, respectively. We obtain

h(Xt,Θt) =
∑
i∈[st]

Θ⊤
t Xt,i

11 / 59

STRUCTURE OF THE MOE MODEL (CONT.)

Input

Output

Router

Gating Network

(𝐗!, 𝒚!)

Expert 1 Expert 2 Expert M. . .

Softmax

Update
𝚯!"#

𝐡(𝐗!, 𝚯")

(𝐗!, 𝒚!)

𝒘!
($!)

𝛑(𝐗!, 𝚯")

▶ In each round t, for task nt, the router selects the expert with the maximum gate output
hm(Xt,θ

(m)
t), denoted as mt, from the M experts:

mt = argmax
m

{hm(Xt,θ
(m)
t) + r(m)

t },

where r(m)
t for any m ∈ [M] is drawn independently from the uniform distribution Unif[0, λ].

▶ Additionally, the router calculates the softmaxed gate outputs, derived by

πm(Xt,Θt) =
exp(hm(Xt,θ

(m)
t))∑M

m′=1 exp(hm′ (Xt,θ
(m)
t))

, ∀m ∈ [M]

for updating Θt+1.
12 / 59

TRAINING OF THE EXPERT MODEL

▶ Let w(m)
t denote the model of expert m in the t-th training round, where each model is

initialized from zero.
▶ In each round t, the training loss is defined by the mean-squared error (MSE) relative to Dt:

Ltr
t (w

(mt)
t ,Dt) =

1
st
∥(Xt)

⊤w(mt)
t − yt∥2

2.

13 / 59

TRAINING OF THE EXPERT MODEL (CONT.)

▶ Gradient descent (GD) provides a unique solution for minimizing Ltr
t (w

(mt)
t ,Dt), which is

determined by the following optimization problem (Evron et al. 2022; S. Lin, Ju, et al. 2023):

min
wt

∥wt − w(mt)
t−1 ∥2, s.t. X⊤

t wt = yt.

▶ Solving this problem, we update the selected expert mt for the current task arrival nt as follows:

w(mt)
t = w(mt)

t−1 + Xt(X⊤
t Xt)

−1(yt − X⊤
t w(mt)

t−1).

▶ For any other expert m ∈ [M] not selected (i.e., m ̸= mt), its model w(m)
t remains unchanged

from w(m)
t−1.

14 / 59

TRAINING OF GATING NETWORK PARAMETERS

After obtaining w(mt)
t , the MoE updates Θt to Θt+1 using GD.

▶ On one hand, we aim for θ(m)
t+1 of each expert m to specialize in a specific task, which helps

mitigate learning loss caused by the incorrect routing of distinct tasks.
▶ On the other hand, the router needs to balance the load among all experts (Fedus, Zoph, and

Shazeer 2022; Li et al. 2024) to reduce the risk of model overfitting and enhance the learning
performance in CL.

15 / 59

KEY DESIGN I: MULTI-OBJECTIVE TRAINING LOSS

▶ First, we propose the following locality loss function for updating Θt:

Lloc
t (Θt,Dt) =

∑
m∈[M]

πm(Xt,Θt)∥w(m)
t − w(m)

t−1∥2.

▶ Then we follow the existing MoE literature (e.g., Fedus, Zoph, and Shazeer 2022; Li et al. 2024)
to define an auxiliary loss to characterize load balance among the experts:

Laux
t (Θt,Dt) = α · M ·

∑
m∈[M]

f (m)
t · P(m)

t ,

where α is constant, f (m)
t = 1

t
∑t

τ=1 1{mτ = m} is the fraction of tasks dispatched to expert m
since t = 1, and P(m)

t = 1
t
∑t

τ=1 πm(Xτ ,Θτ) · 1{mτ = m} is the average probability that the router
chooses expert m since t = 1.

16 / 59

KEY DESIGN I: MULTI-OBJECTIVE TRAINING LOSS (CONT.)

We finally define the task loss for each task arrival nt as follows:

Ltask
t (Θt,w(mt)

t ,Dt) = Ltr
t (w

(mt)
t ,Dt) + Lloc

t (Θt,Dt) + Laux
t (Θt,Dt).

Commencing from the initialization Θ0, the gating network is updated based on GD:

θ
(m)
t+1 = θ

(m)
t − η · ∇

θ
(m)
t

Ltask
t (Θt,w(mt)

t ,Dt), ∀m ∈ [M]

where η > 0 is the learning rate.

17 / 59

KEY DESIGN II: EARLY TERMINATION

Algorithm Training of the MoE model for CL

1: Input: T, σ0,Γ = O(σ1.25
0), λ = Θ(σ1.25

0), I(m) = 0, α = O(σ0.5
0), η = O(σ0.5

0),T1 = ⌈η−1M⌉;
2: Initialize θ

(m)
0 = 0 and w(m)

0 = 0, ∀m ∈ [M];
3: for t = 1, · · · ,T do
4: Generate r(m)

t for any m ∈ [M];
5: Select mt and update w(mt)

t ;
6: if t > T1 then
7: for ∀m ∈ [M] with |hm − hmt | < Γ do
8: I(m) = 1; // Convergence flag
9: end for

10: end if
11: if ∃m, s.t. I(m) = 0 then
12: Update θ

(m)
t for any m ∈ [M];

13: end if
14: end for

18 / 59

THEORETICAL RESULTS: FEATURE SIGNAL

Lemma 1 (M > N version)

For any two feature matrices X and X̃ with the same feature signal vn, with probability at least 1 − o(1), their
corresponding gate outputs of the same expert m satisfy∣∣hm(X,θ

(m)
t)− hm(X̃,θ

(m)
t)

∣∣ = O(σ1.5
0).

Given N tasks, all experts can be classified into N sets based on their specialty, where each expert set
is defined as:

Mn =
{

m ∈ [M]
∣∣n = argmax

j∈[N]
(θ

(m)
t)⊤vj

}
.

19 / 59

THEORETICAL RESULTS: CONVERGENCE OF EXPERT MODEL

Proposition 1 (M > N version)

Under Algorithm 1, with probability at least 1 − o(1), for any t > T1, where T1 = ⌈η−1M⌉, each expert
m ∈ [M] stabilizes within an expert set Mn, and its expert model remains unchanged beyond time T1,
satisfying w(m)

T1+1 = · · · = w(m)
T .

20 / 59

NECESSITY OF EARLY TERMINATION

Proposition 2 (M > N version)

If the MoE keeps updating Θt at any round t > T1, we obtain:
1. At round t1 = ⌈η−1σ−0.25

0 M⌉, the following property holds

∣∣hm(Xt1 ,θ
(m)
t1

)− hm′(Xt1 ,θ
(m′)
t1

)
∣∣ = {

O(σ1.75
0), if m,m′ ∈ Mn,

Θ(σ0.75
0), otherwise.

2. At round t2 = ⌈η−1σ−0.75
0 M⌉, the following property holds∣∣hm(Xt2 ,θ

(m)
t2

)− hm′(Xt2 ,θ
(m′)
t2

)
∣∣ = O(σ1.75

0), ∀m,m′ ∈ [M].

21 / 59

BENEFIT OF EARLY TERMINATION

Proposition 3 (M > N version)

Under Algorithm 1, the MoE terminates updating Θt since round T2 = O(η−1σ−0.25
0 M). Then for any task

arrival nt at t > T2, the router selects any expert m ∈ Mnt with an identical probability of 1
|Mnt |

, where |Mnt |
is the number of experts in set Mn.

22 / 59

DEFINITION OF FORGETTING AND GENERALIZATION

We define Et(w
(mt)
t) as the model error in the t-th round:

Et(w
(mt)
t) = ∥w(mt)

t − wnt∥2
2.

Following the existing literature on CL (e.g., S. Lin, Ju, et al. 2023; Chaudhry et al. 2018), we assess
the performance of MoE in CL using the metrics of forgetting and overall generalization error:
▶ Forgetting:

Ft =
1

t − 1

t−1∑
τ=1

(Eτ (w(mτ)
t)− Eτ (w(mτ)

τ)).

▶ Overall generalization error:

GT = 1
T
∑T

τ=1 Eτ (w
(mτ)
T).

23 / 59

BENCHMARK: PERFORMANCE OF SINGE EXPERT

Here we define r := 1 − s
d as the overparameterization ratio.

Proposition 4

If M = 1, for any training round t ∈ {2, · · · ,T}, we have

E[Ft] =
1

t − 1

t−1∑
τ=1

{rt − rτ

N

N∑
n=1

∥wn∥2 +
rτ − rt

N2

∑
n̸=n′

∥wn′ − wn∥2
}
,

E[GT] =
rT

N

N∑
n=1

∥wn∥2 +
1 − rT

N2

∑
n̸=n′

∥wn − w′
n∥2.

24 / 59

PERFORMANCE OF MOE

We define L(m)
t := t · f (m)

t as the cumulative number of task arrivals routed to expert m up to round t.

Theorem 1 (M > N Case)

If M = Ω(N ln(N)), for each round t ∈ {2, · · · ,T1}, the expected forgetting satisfies

E[Ft] <
1

t − 1

t−1∑
τ=1

{rL(mτ)
t − rL(mτ)

τ

N

N∑
n=1

∥wn∥2 +
rL(mτ)

τ − rL(mτ)
t

N2

∑
n ̸=n′

∥wn′ − wn∥2
}
.

For each t ∈ {T1 + 1, · · · ,T}, we have E[Ft] =
T1−1
t−1 E[FT1]. Further, after training task nT in the last round

T, the overall generalization error satisfies

E[GT] <
1
T

T∑
τ=1

{rL(mτ)
T1

N

N∑
n=1

∥wn∥2 +
1 − rL(mτ)

T1

N2

∑
n̸=n′

∥wn′ − wn∥2
}
.

25 / 59

EXPERIMENT SETTING: SYNTHETIC DATA

▶ We first generate N ground truths and their corresponding feature signals.
• For each wn ∈ Rd, we randomly generate d elements by a normal distribution N (0, σ0).

These ground truths are then scaled by a constant to obtain their feature signals vn.
▶ In each training round t, we generate (Xt,yt) based on ground-truth pool W and feature signals.

• After drawing wnt from W , for Xt ∈ Rd×s, we randomly select one out of s samples to fill
with βtvnt . The other s − 1 samples are generated from N (0, σ2

t Id).
• Then, we compute the output yt = X⊤

t wnt .
▶ Here we set σ0 = 0.4, σt = 0.1, d = 10, s = 6, η = 0.5, α = 0.5 and λ = 0.3.

26 / 59

EXPERIMENTS: SYNTHETIC DATA

0 500 1000 1500 2000
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

fo
rg

et
tin

g
F t

M = 1
M = 5
M = 10
M = 20

(a) With termination.

0 500 1000 1500 2000
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fo
rg

et
tin

g
F t

M = 1
M = 5
M = 10
M = 20

(b) Without termination.

0 500 1000 1500 2000
Rounds

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r G
t M = 1

M = 5
M = 10
M = 20

(c) With termination.

0 500 1000 1500 2000
Rounds

0.0

0.2

0.4

0.6

0.8

1.0

1.2

er
ro

r G
t

M = 1
M = 5
M = 10
M = 20

(d) Without termination.

Figure. The dynamics of forgetting and overall generalization errors with and without termination of
updating Θt in Algorithm 1. Here we set N = 6 with K = 3 clusters and vary M ∈ {1, 5, 10, 20}.

27 / 59

EXPERIMENTS: REAL-DATA VALIDATION

▶ In each round, we obtain the feature matrix by averaging s = 100 training data samples.
▶ To diversify the model gaps of different tasks, we transform the d × d matrix into a d × d

dimensional normalized vector to serve as input for the gating network.
▶ Then we calculate the variance σ0 of each element across all tasks from the input vector.

0 10 20 30 40 50 60
Rounds

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

fo
rg

et
tin

g
F t

M = 1
M = 4
M = 7

(a) With termination.

0 10 20 30 40 50 60
Rounds

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
fo

rg
et

tin
g

F t

M = 1
M = 4
M = 7

(b) Without termination.

0 10 20 30 40 50 60
Rounds

0.02

0.04

0.06

0.08

0.10

0.12

0.14

er
ro

r G
t M = 1

M = 4
M = 7

(c) With termination.

0 10 20 30 40 50 60
Rounds

0.02

0.04

0.06

0.08

0.10

0.12

0.14

er
ro

r G
t

M = 1
M = 4
M = 7

(d) Without termination.

Figure. Learning performance under MNIST datasets (LeCun et al. 1989). Here we set N = 3 and
M ∈ {1, 4, 7}.

28 / 59

CONCLUSION

▶ We conducted the first theoretical analysis of MoE and its impact on learning performance in
CL, focusing on an overparameterized linear regression problem.

▶ We proved that the MoE model can diversify experts to specialize in different tasks, while its
router can learn to select the right expert for each task and balance the loads across all experts.

▶ Then we demonstrated that, under CL, terminating the updating of gating network parameters
after sufficient training rounds is necessary for system convergence.

▶ Furthermore, we provided explicit forms of the expected forgetting and overall generalization
error to assess the impact of MoE.

▶ Finally, we conducted experiments on real datasets using DNNs to show that certain insights
can extend beyond linear models.

29 / 59

Part II

MOE IN MOBILE EDGE COMPUTING (MEC)

30 / 59

MOTIVATIONS

▶ In mobile edge computing (MEC) networks, mobile users generate diverse machine learning
tasks dynamically over time.

▶ These tasks are typically offloaded to the nearest available edge server, by considering
communication and computational efficiency.

▶ However, its operation leads to severe overfitting or catastrophic forgetting of previous tasks.
▶ Therefore, it is natural and promising to apply the MoE model in MEC networks.

31 / 59

LITERATURE REVIEW: MOE IN MEC

▶ Rajbhandari et al. (2022) focuses on minimizing network delay by leveraging high-bandwidth
connections to allocate experts efficiently.

▶ Singh et al. (2023) optimizes communication to enhance the routing strategy of the gating
network and eliminate unnecessary data movement.

▶ Wang et al. (2024) exploits the MEC structure to support MoE-based generative AI by optimally
scheduling tasks to experts with varying computational resource limitations.

▶ However, there is a lack of theoretical understanding of MoE and its design to guarantee the
convergence of continual learning and generalization errors.

32 / 59

SYSTEM MODEL

Expert 1
(busy)

Expert 2
(idle)

Task arrival
at time	𝑡

Expert M
(idle)

MoE gating
network (see Fig. 2)

. . .

. . .

▶ An MEC network operator manages a set M = {1, · · · ,M} of MEC servers/cloudlets as experts.
▶ We consider a discrete time horizon T = {1, · · · ,T}.
▶ At the beginning of each time t, a mobile user randomly arrives to request task offloading to

solve a machine learning problem from its nearest BS.

33 / 59

SYSTEM MODEL: CL PROCESS

Expert 1
(busy)

Expert 2
(idle)

Task arrival
at time	𝑡

Expert M
(idle)

MoE gating
network (see Fig. 2)

. . .

. . .

1. The current user needs to upload its data, denoted by Dt = (Xt,yt), to the BS of its nearest
expert m̃t for later task training.

2. After uploading Dt, the MEC network operator selects one available expert out of M experts,
denoted by mt ∈ M, and asks BS of expert m̃t to forward the task dataset to the chosen expert mt.

3. Once completing task t, expert mt updates its local model and outputs the result to the MEC
network operator. Then its BS transmits the result back to the mobile user via expert m̃t’s BS.

34 / 59

SYSTEM MODEL: MEC

▶ After the MEC network operator decides expert mt for handling task t, there will be a
transmission delay for task t, which is denoted by dtr

t (mt, m̃t) ∈ {dtr
l , · · · , dtr

u }.
▶ In MEC networks, dtr

t (mt, m̃t) includes two parts: the uplink data transmission time from the
user to the BS m̃t and the communication time from BS of expert m̃t to BS of expert mt.

▶ We practically model that dtr
t (mt, m̃t) satisfies a general cumulative distribution function (CDF)

distribution and can be different from the others.

35 / 59

SYSTEM MODEL: MEC

▶ In addition to the transmission delay dtr
t (mt, m̃t), task t takes expert mt execution time, denoted

by dex(mt) ∈ {dex
l , · · · , dex

u }, to complete the training process.
▶ Similarly, we practically model that dex(mt) of any expert mt satisfies a general CDF distribution.
▶ In summary, the total time delay for transmitting and training task t is

dt(mt, m̃t) = dtr
t (mt, m̃t) + dex(mt),

where dt(mt, m̃t) ∈ {dtr
l + dex

l , · · · , dtr
u + dex

u }. In the following, we simplify the notation to
dt = dt(mt, m̃t) and du = dtr

u + dex
u .

36 / 59

SYSTEM MODEL: MEC

▶ After being selected for transmitting dataset and training task t, expert mt will remain busy
until completing the training process at time t + dt.

▶ We define γ
(m)
t ∈ {0, 1} as the binary service state of expert m ∈ M at time t:

γ
(m)
t =

{
1, if expert m is idle at time t,
0, if expert m is busy at time t.

37 / 59

ADAPTIVE MOE MODELS IN MEC

Input
(𝐗! , 𝒚!)

RouterGating Network

Step 5: Softmax	𝛑(𝐗! , 𝚯") in (5)

Step 1: Calculate
𝐡(𝐗! , 𝚯") in (3)

Step 3: Train task t and
update local model

Task 𝑡

Step 4:
Output

Update	𝚯"#$𝒕

Network Operator

Step 2:
Select 𝑚!

in (4)

Output

▶ Step 1: The gating network uses Xt to compute the linear output, denoted by hm(Xt,θ
(m)
t), for

each expert m ∈ M. Define Θt := [θ
(1)
t · · · θ(M)

t] and h(Xt,Θt) := [h1(Xt,θ
(1)
t) · · · hM(Xt,θ

(M)
t)]

to be the parameters and the outputs of the gating network for all experts, respectively:

h(Xt,Θt) =
∑
i∈[s]

Θ⊤
t Xt,i,

where Xt,i is the i-th sample of the feature matrix Xt.

38 / 59

ADAPTIVE MOE MODELS IN MEC

Input
(𝐗! , 𝒚!)

RouterGating Network

Step 5: Softmax	𝛑(𝐗! , 𝚯") in (5)

Step 1: Calculate
𝐡(𝐗! , 𝚯") in (3)

Step 3: Train task t and
update local model

Task 𝑡

Step 4:
Output

Update	𝚯"#$𝒕

Network Operator

Step 2:
Select 𝑚!

in (4)

Output

▶ Step 2: Based on the diversified gating output hm(Xt,θ
(m)
t) of each expert m, the router decides

which expert to handle Dt = (Xt,yt).
At each time t, the router selects expert mt with the maximum gating network output:

mt = arg max
m∈M,γm=1

{hm(Xt,θ
(m)
t) + r(m)

t },

where r(m)
t = o(1) for any expert m is a small random noise.

39 / 59

ADAPTIVE MOE MODELS IN MEC

Input
(𝐗! , 𝒚!)

RouterGating Network

Step 5: Softmax	𝛑(𝐗! , 𝚯") in (5)

Step 1: Calculate
𝐡(𝐗! , 𝚯") in (3)

Step 3: Train task t and
update local model

Task 𝑡

Step 4:
Output

Update	𝚯"#$𝒕

Network Operator

Step 2:
Select 𝑚!

in (4)

Output

▶ Step 3: After selecting expert mt, the router forwards the dataset Dt = (Xt,yt) to this expert.
Then, this expert trains task t and updates its own local model.

▶ Step 4: Once completing the task training at time t + dt, where dt is the random total time delay,
expert mt returns the learning result to user t via BSs.

40 / 59

ADAPTIVE MOE MODELS IN MEC

Input
(𝐗! , 𝒚!)

RouterGating Network

Step 5: Softmax	𝛑(𝐗! , 𝚯") in (5)

Step 1: Calculate
𝐡(𝐗! , 𝚯") in (3)

Step 3: Train task t and
update local model

Task 𝑡

Step 4:
Output

Update	𝚯"#$𝒕

Network Operator

Step 2:
Select 𝑚!

in (4)

Output

▶ Step 5: Finally, after training task t, the router calculates the softmaxed gate outputs based on
the gating outputs, derived by

πm(Xt,Θt) =
exp(hm(Xt,θ

(m)
t))∑M

m′=1 exp(hm′(Xt,θ
(m′)
t))

, ∀m ∈ M.

Then the MoE model exploits gradient descent to update Θt+dt for all experts.

41 / 59

CL TASKS

▶ For each task from a mobile user, we consider fitting a linear model f (X) = X⊤w with ground
truth w ∈ Rp as in the CL literature (Evron et al. 2022; S. Lin, Ju, et al. 2023).

▶ For the tasks of all mobile users throughout the T time horizon, their ground truths can be
classified into N clusters based on task similarity. Let Wn denote the n-th ground-truth cluster.

Assumption 1

For any two ground different truths, we assume that they satisfy

∥wt − wt′∥∞ =

{
O(σ2

0), if wt,wt′ ∈ Wn,

Θ(σ0), otherwise,

where σ0 ∈ (0, 1) denotes the variance of ground truths’ elements. Moreover, we assume that each ground
truth wt possesses a unique feature signal vt ∈ Rd with ∥vt∥∞ = O(1).

42 / 59

DATA MODEL

Definition 1
At the beginning of each time slot t ∈ [T], the dataset Dt = (Xt,yt) of the new task arrival is generated by the
following steps:

1. Independently generate a random variable βt ∈ (0,C], where C is a constant satisfying C = O(1).
2. Generate feature matrix Xt as a collection of s samples, where one sample is given by βtvt and the rest of

the s − 1 samples are drawn from normal distribution N (0, σ2
t Ip), where σt ≥ 0 is the noise level.

3. Generate the output to be yt = X⊤
t wt.

43 / 59

UPDATE OF LOCAL EXPERT MODELS FOR CL

▶ Let w(m)
t denote the local model of expert m at the beginning of t-th time slot, where we

initialize each model to be zero, i.e., w(m)
0 = 0, for any expert m ∈ M.

▶ After routing Dt to expert mt, it updates its model to w(mt)
t+dt

after a random time delay of dt.

▶ For any other unselected idle expert m ∈ M (i.e., m ̸= mt), its model w(m)
t+dt

remains unchanged

from latest w(m)
t+dt−1.

44 / 59

UPDATE OF LOCAL EXPERT MODELS FOR CL

▶ For each task t, we define the training loss as the mean-squared error (MSE) with respect to
dataset Dt:

Ltr
t (w

(mt)
t+dt

,Dt) =
1
s
∥(Xt)

⊤w(mt)
t+dt

− yt∥2
2.

▶ According to (Evron et al. 2022; S. Lin, Ju, et al. 2023), this solution is determined by the
following optimization problem:

min
w

∥w − w(mt)
t−1 ∥2,

s.t. X⊤
t w = yt.

45 / 59

UPDATE OF LOCAL EXPERT MODELS FOR CL

Lemma 2
For the selected expert mt, after completing task t at time t + dt, its expert model is updated to be:

w(mt)
t+dt

= w(mt)
t+dt−1 + Xt(X⊤

t Xt)
−1(yt − X⊤

t w(mt)
t+dt−1).

While for any other expert m ̸= mt, we keep its model unchanged at time t + dt, i.e.,

w(m)
t+dt

= w(m)
t+dt−1, ∀m ∈ M and m ̸= mt.

46 / 59

UPDATE OF GATING PARAMETERS

Definition 2
Given gating network parameter Θt at time t, the locality loss of experts caused by training task t is:

Lloc
t (w(mt)

t+dt
,Θt) =

∑
m∈M

πm(Xt,Θt)∥w(m)
t+dt

− w(m)
t+dt−1∥2,

where πm(Xt,Θt) is the softmax value of expert m derived at time t.

47 / 59

UPDATE OF GATING PARAMETERS

We finally define the task loss objective for each task t as follows:

Lt(w
(mt)
t+dt

,Θt,Dt) = Ltr
t (w

(mt)
t+dt

,Dt) + Lloc
t (w(mt)

t+dt
,Θt).

Commencing from the initialization Θ0, the gating network parameter is updated based on gradient
descent:

θ
(m)
t+dt+1 = θ

(m)
t+dt

− η · ∇
θ
(m)
t

Lt(w
(mt)
t+dt

,Θt,Dt), ∀m ∈ M,

where η > 0 is the learning rate.

48 / 59

UPDATE OF GATING PARAMETERS

Algorithm Adaptive routing and training for MoE gating network

1: Input: T, σ0, δ = o(1);
2: Initialize θ

(m)
0 = 0 and w(m)

0 = 0, ∀m ∈ M;
3: for t = 1, · · · ,T do
4: Input dataset Dt = (Xt,yt);
5: Generate noise r(m)

t for each expert m ∈ M;
6: Select expert mt and transmit dataset Dt to expert mt;
7: Update local expert model w(mt)

t+dt
after completing task t;

8: Update gating network parameter θ(m)
t for any expert m ∈ M;

9: end for

49 / 59

THEORETICAL GUARANTEE: GATING NETWORK

Lemma 3
For two feature matrices X and X̃, if their ground truths w, w̃ ∈ Wn are in the same cluster, with probability
at least 1 − o(1), their corresponding gating network outputs of the same expert m satisfy∣∣hm(X,θ

(m)
t)− hm(X̃,θ

(m)
t)

∣∣ = O(σ0).

Given N ground-truth clusters, we can classify all experts into N expert sets based on their specialty,
where each set Mn is defined as:

Mn =
{

m ∈ M
∣∣∣(θ(m)

t)⊤vi > (θ
(m)
t)⊤vj,∀wi ∈ Wn,wj /∈ Wn

}
.

50 / 59

THEORETICAL GUARANTEE: NUMBER OF EXPERTS

Proposition 5

As long as M = Ω(NMth ln(
1
δ)), where

Mth = min
{

du, logN

(1
δ

)}
with δ = o(1), for any task t with wt ∈ Wn arrives after the system convergence, with probability at least
1 − o(1), there always exists an idle expert m ∈ Mn to provide the correct type of expertise for that task.

51 / 59

ROUTER’S CONVERGENCE

Proposition 6

Under Algorithm 1, for any task arrival t > T1 with wt ∈ Wn, with probability at least 1 − o(1), we obtain

∥hm(Xt,θ
(m)
t)− hm′(Xt,θ

(m′)
t)∥∞ =

{
O(σ0), if m,m′ ∈ Mn,

Θ(σ0), otherwise.

The router then assigns tasks within the same ground-truth cluster Wn to any expert m ∈ Mn.

52 / 59

EXPERTS’ CONVERGENCE

Proposition 7

Under Algorithm 1, for any task arrival t > T1, each expert m ∈ M satisfies learning convergence

∥w(m)
t − w(m)

T2
∥∞ = O(σ2

0)

with probability at least 1 − o(1).

53 / 59

OVERALL GENERALIZATION ERROR

▶ We define Et(w
(mt)
t+dt

) as the model error for the t-th task:

Et(w
(mt)
t+dt

) = ∥w(mt)
t+dt

− wt∥2
2.

Then the overall generalization performance of the model w(m)
T+dT

after training the last task T is:

GT =
1
T

T∑
t=1

Ed(w
(mt)
T+dT

).

▶ We define r := 1 − s
p < 1 as the overparameterized ratio, where s is the number of samples and

p is the dimension of each sampled vector in Xt.
▶ We define the number of updates of expert m till completing task t as:

L(m)
t =

t∑
τ=1

1{mτ = m},

where mτ is the selected expert at time τ ≤ t, and 1{(·)} = 1 if (·) is true and equals 0 otherwise.
▶ For expert m, let τ (m)(i) ∈ {1, · · · ,T} represent the time slot when the router selects expert m for

the i-th time.
54 / 59

GENERALIZATION ERROR: BENCHMARK

Proposition 8

If the MEC network operator always chooses the nearest or the most powerful expert for each task arrival
t ∈ T as in the existing MEC offloading literature (e.g., Ouyang et al. 2018; Shakarami et al. 2020; Gao et
al. 2019; Yan et al. 2021), the overall generalization error is:

E[GT] =
1
T

T∑
t=1

rL(mt)
T ∥wt∥2

︸ ︷︷ ︸
term G1

+
1
T

T∑
t=1

(1 − rL(mt)
T)E

[
∥wn − wn′∥2

∣∣∣n,n′ ∈ [N]
]

︸ ︷︷ ︸
term G2

.

▶ Term G1: training error of the ground truth of each task under overparameterized regime.
▶ Term G2: the model gap between ground truths assigned the same expert.

55 / 59

GENERALIZATION ERROR: EXPLICIT EXPRESSIONS

Theorem 2
Given M = Ω(NMth ln(

1
δ)), after Algorithm 1’s completion of training the last task T at time T + dT, the

overall generalization error satisfies

E[GT] <
1
T

T∑
t=1

rL(mt)
T ∥wt∥2 +

1
T

T∑
t=1

(1 − rL(mt)
T1) · rL(mt)

T −L(mt)
T1 E

[
∥wn − wn′∥2

∣∣∣n,n′ ∈ [N]
]

︸ ︷︷ ︸
term G3

+O(σ2
0)︸ ︷︷ ︸

term G4

which converges to the minimum model error O(σ2
0) between tasks in the same cluster, as T → ∞.

▶ Term G3: the model error arising from the randomized routing for the router exploration
(t ≤ T1 in Proposition 6) and the expert learning (T1 < t ≤ τ (m)(L(m)

T1
+ 1) in Proposition 7).

▶ Term G4: the minimum model error between similar tasks within the same cluster that are
routed to a specific expert m after the expert stabilizes within an expert set.

56 / 59

EXPERIMENTS: SYNTHETIC DATA

0 500 1000 1500 2000 2500 3000
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6
er

ro
r G

t

M = 10
M = 30
M = 50
M = 70

(a) Our Algorithm 1.

0 500 1000 1500 2000 2500 3000
Rounds

0.0

0.2

0.4

0.6

0.8

er
ro

r G
t

M = 10
M = 30
M = 50
M = 70

(b) Existing MEC offloading strategies.

▶ The benchmark involves existing offloading strategies in MEC, which always select the nearest
or the most powerful available expert (e.g., Ouyang et al. 2018; Shakarami et al. 2020; Gao et
al. 2019; Yan et al. 2021).

▶ We set the parameters as follows: T = 3000, N = 10 task types, σ0 = 0.6, du = 10, η = 0.2,
p = 15, and s = 10.

57 / 59

EXPERIMENTS: MNIST DATA

0 20 40 60 80 100
Rounds

0.00

0.02

0.04

0.06

0.08

0.10

0.12

er
ro

r G
t

Alg 1: M = 5
Alg 1: M = 10
MEC: M = 5
MEC: M = 10

Figure. The dynamics of overall generalization errors under our Algorithm 1 and the existing MEC offloading strategies,
using DNNs in MNIST datasets (LeCun et al. 1989).

58 / 59

CONCLUSION

▶ This paper is the first to introduce MoE theory in MEC networks and save MEC operation from
the increasing generalization error over time.

▶ We introduce an adaptive gating network in MEC, enabling each expert to specialize in a
specific type of tasks upon convergence.

▶ We derived the minimum number of experts required to match each task with a specialized,
available expert. Our MoE approach consistently reduces the overall generalization error over
time, unlike the traditional MEC approach.

▶ When the number of experts is sufficient for convergence, adding more experts delays the
convergence time and worsens the generalization error within the same time horizon.

59 / 59

REFERENCES I

Chaudhry, Arslan et al. (2018). “Efficient lifelong learning with a-gem”. In: arXiv preprint
arXiv:1812.00420.
Chen, Zixiang et al. (2022). “Towards Understanding the Mixture-of-Experts Layer in Deep
Learning”. In: Advances in Neural Information Processing Systems 35, pp. 23049–23062.
Doan, Thang, Seyed Iman Mirzadeh, and Mehrdad Farajtabar (2023). “Continual learning
beyond a single model”. In: Conference on Lifelong Learning Agents. PMLR, pp. 961–991.
Du, Nan et al. (2022). “Glam: Efficient scaling of language models with mixture-of-experts”. In:
International Conference on Machine Learning. PMLR, pp. 5547–5569.
Evron, Itay et al. (2022). “How catastrophic can catastrophic forgetting be in linear
regression?” In: Conference on Learning Theory. PMLR, pp. 4028–4079.
Fedus, William, Barret Zoph, and Noam Shazeer (2022). “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity”. In: The Journal of Machine Learning
Research 23.1, pp. 5232–5270.
Gao, Bin et al. (2019). “Winning at the starting line: Joint network selection and service
placement for mobile edge computing”. In: IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, pp. 1459–1467.
Gao, Rui and Weiwei Liu (2023). “Ddgr: Continual learning with deep diffusion-based
generative replay”. In: International Conference on Machine Learning. PMLR, pp. 10744–10763.

REFERENCES II

Gou, Jianping et al. (2021). “Knowledge distillation: A survey”. In: International Journal of Computer
Vision 129.6, pp. 1789–1819.
Hihn, Heinke and Daniel A Braun (2021). “Mixture-of-Variational-Experts for Continual
Learning”. In: arXiv preprint arXiv:2110.12667.
Jin, Xisen et al. (2021). “Gradient-based editing of memory examples for online task-free
continual learning”. In: Advances in Neural Information Processing Systems 34, pp. 29193–29205.
Kirkpatrick, James et al. (2017). “Overcoming catastrophic forgetting in neural networks”. In:
Proceedings of the National Academy of Sciences 114.13, pp. 3521–3526.
Konishi, Tatsuya et al. (2023). “Parameter-level soft-masking for continual learning”. In:
International Conference on Machine Learning. PMLR, pp. 17492–17505.
LeCun, Yann et al. (1989). “Handwritten digit recognition with a back-propagation network”.
In: Advances in neural information processing systems 2.
Li, Jing et al. (2024). “LocMoE: A Low-overhead MoE for Large Language Model Training”. In:
arXiv preprint arXiv:2401.13920.
Lin, Bin et al. (2024). “Moe-llava: Mixture of experts for large vision-language models”. In:
arXiv preprint arXiv:2401.15947.
Lin, Sen, Peizhong Ju, et al. (2023). “Theory on forgetting and generalization of continual
learning”. In: International Conference on Machine Learning. PMLR, pp. 21078–21100.

REFERENCES III

Lin, Sen, Li Yang, et al. (2021). “TRGP: Trust Region Gradient Projection for Continual
Learning”. In: International Conference on Learning Representations.
Ouyang, Tao, Zhi Zhou, and Xu Chen (2018). “Follow me at the edge: Mobility-aware dynamic
service placement for mobile edge computing”. In: IEEE Journal on Selected Areas in Communications
36.10, pp. 2333–2345.
Rajbhandari, Samyam et al. (2022). “Deepspeed-moe: Advancing mixture-of-experts inference
and training to power next-generation ai scale”. In: International Conference on Machine Learning.
PMLR, pp. 18332–18346.
Rypeść, Grzegorz et al. (2023). “Divide and not forget: Ensemble of selectively trained experts
in Continual Learning”. In: The Twelfth International Conference on Learning Representations.
Shakarami, Ali, Mostafa Ghobaei-Arani, and Ali Shahidinejad (2020). “A survey on the
computation offloading approaches in mobile edge computing: A machine learning-based
perspective”. In: Computer Networks 182, p. 107496.
Singh, Siddharth et al. (2023). “A hybrid tensor-expert-data parallelism approach to optimize
mixture-of-experts training”. In: Proceedings of the 37th International Conference on Supercomputing,
pp. 203–214.
Wang, Jiacheng et al. (2024). “Toward scalable generative ai via mixture of experts in mobile
edge networks”. In: arXiv preprint arXiv:2402.06942.

REFERENCES IV

Wang, Liyuan et al. (2022). “Coscl: Cooperation of small continual learners is stronger than a
big one”. In: European Conference on Computer Vision. Springer, pp. 254–271.
Yan, Jia et al. (2021). “Pricing-driven service caching and task offloading in mobile edge
computing”. In: IEEE Transactions on Wireless Communications 20.7, pp. 4495–4512.
Yu, Jiazuo et al. (2024). “Boosting Continual Learning of Vision-Language Models via
Mixture-of-Experts Adapters”. In: arXiv preprint arXiv:2403.11549.

	MoE in Continual Learning
	MoE in Mobile Edge Computing (MEC)
	References

